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A B S T R A C T   

Decisions under risk, either for gain or loss, are ubiquitous in our daily life. However, the extent to which the 
valence (gain or loss) of risky financial choices shapes outcome valuation and belief updating is a relatively 
overlooked research area. In the current study, we image neural activity using electroencephalography (EEG) 
combined with a financial decision task to investigate outcome valuation and belief updating. In the experi
mental task, subjects can either choose to take the risky gamble (stock) or the safe option (bond) and then report 
their belief over the quality of stock option in a trial-by-trial manner. Although the actual probabilities of the 
risky option are symmetric over gain and loss, we found an asymmetric effect of belief updating and risk pref
erence, viz. the subjects tend to both report a higher probability for the stock to win and be more risk taking for 
potential gains compared to symmetric losses. The EEG data following feedback of stock payoff represents a 
parallel pattern which is resonant with the behavioral results. Notably, there is generally a greater FRN differ
ence for feedback (correct vs. incorrect) in the gain condition compared to the loss condition, and the deflection 
of P300 is more prominent in gain condition than loss condition irrespective of the correctness. Lastly, while the 
P300 could be predictive for the subsequent probability estimate in both conditions (gain and loss), the FRN is 
only predictive for belief updating in the gain rather than loss condition. Therefore, both the behavioral and 
electrophysiological findings indicate an unbalanced processing of valence in shaping decisions under risk within 
financial learning in an experiential framework.   

1. Introduction 

In our modern society, risk is ubiquitous in every aspect of our life 
and is especially evident now during the current protracted COVID-19 
pandemic [1,2]. Indeed, in our daily lives, we perforce learn to make 
adaptive choices through trial and error. In the face of risk, the indi
vidual needs to recognize the correct choice out of several available 
options. If there is an opportunity with net reward, we need to seize the 
moment and gain the advantage, whereas if the option possibly entails 
loss, we must analyze and understand the state of affairs toward 
avoiding any unnecessary loss [3,4]. 

One aspect of research involving risky choices lies at the descriptive 
framework. For instance, with the options which involve different de
gree of uncertainty, subjects can choose to select one option out of them. 
As pioneered by Tversky and Kahneman (1979, 1992) in their seminal 
prospect theory, for decision under risk, individuals generally tend to 
loom larger for loss than that of equivalent gain which make subjects be 
risk averse in gain domain and be risk seeking in loss domain [5,6]. 
Nevertheless, on the other side of the same coin, under the framework of 
the experience, there might be a different story which is gaining aca
demic attention recently from the fields of psychology, economics and 
neuroscience [7,8]. Notably, unlike the descriptive task which involves 
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the static choice, while for the risky choice in experiential framework 
with learning ingredients, the subjects are exposed to the dynamic 
context where they need to figure out the regularities of the options with 
trial and error. In principle, in the instrumental learning scenario, peo
ple should treat the valence, whether gains or losses, of the outcome in a 
symmetric manner to objectively evaluate their strategies. However, 
recent studies from psychology and economics suggest that this apparent 
conclusion might not hold [9,10]. For instance, Lebreton et al. [10] and 
Ting et al. [11] implemented an instrumental learning task and found 
that confidence rating under gains is significantly higher compared to it 
under losses. In parallel, applying a financial learning task, Kuhnen 
suggested that there is an asymmetric effect of belief updating, the 
subjects tend to overestimate the probability of the risky option under 
gains compared to under losses [12]. Therefore, it’s of great interest to 
examine to what extent that the subjects treat the gain and loss condition 
in a learning task within a experiential framework. 

To fill the research gap of the prior literature, we intend to extend the 
previous studies to track the potential gain loss asymmetry when the 
subjects are involved in a dynamic learning task. Under the umbrella of 
experience framework, we have kept the following questions in mind. 
What’s the exact asymmetric characteristics of belief updating? How 
does this asymmetry reflect by the risky preference over gain and loss, 
and more critically, what’s the corresponding neural underpinnings that 
represent such a gain loss asymmetry revealed through experience, i.e., 
the revealed outcome [13,14] ? 

In order to answer these unresolved questions, in our current study, 
we adapted a financial learning task initially developed by Kuhnen [12] 
and simultaneously recorded the EEG to examine how the brain tracks 
the outcome under gains compared to under losses. Specifically, both 
under gains and losses, subjects are instructed to make a binary choice 
between a safe option (a fixed payoff) and a risky option in which the 
subjects either obtain a larger or smaller payoff. The payoff outcome of 
the risky option is revealed to the subjects irrespective of whether they 
choose to take the gamble or not. In addition, subjects are instructed to 
estimate the probability that the risky option is good subsequent to the 
revelation of the outcome. Hence, the current design makes it possible to 
investigate how valence shapes the outcome evaluation at the 
consummatory stage and furthermore, whether choice itself modulates 
such a valence effect. 

Our prediction of the EEG profile over feedback is based on the 
pioneering work of Gehring and Willoughby [15] who devised a 5/25 
binary choice task and reported that the feedback related negativity 
(FRN) diverges under the gain versus loss outcomes. Subsequent studies, 
however, challenge Gehring and Willoughby [15] and suggest that FRN 
does not solely represent gain loss differentiation of outcome, but mainly 
responds to the correctness of the choice. Hajcak et al. [16] further 
suggested that FRN is sensitive to the binary evaluation of good versus 
bad outcomes and is not sensitive to the magnitude of the gain or loss. 
Moreover, Yeung and Sanfey [17] suggested the separate roles of the 
FRN and P300 following feedback about the outcome. With an orthog
onal manipulation, Bellebaum et al. [18] suggested that the deflection of 
the FRN could nevertheless be modulated by the magnitude of the 
outcome. In terms of the P300, many of the previous studies suggest that 
it mainly responds toward the salience of the events [19,20]. However, 
some recent studies also indicate that it might also be sensitive to the 
reward; the reward rather than non-reward could have a relatively 
larger deflection of the P300 [21]. Altogether, ERP studies in the past 
two decades suggest that the FRN and P300 each plays an important role 
in representing reward processing under gains and losses. 

More recent EEG studies have begun to examine how decisions under 
either gain or loss conditions shape the ERP deflection. For instance, 
employing a simple monetary task, Zheng et al. [22] found that whereas 
there is a FRN effect of outcome under gain condition, it is absent under 
the loss condition. Moreover, for the P300, there is no gain loss condi
tion differentiation. However, one limitation of previous EEG studies is 
that they mainly focus on how the valence (gain/loss condition) 

modulates reward processing under static, simple-choice task without 
dynamic adaptation (e.g., [22,23]) or lacking the tradeoff between risk 
and safe options [24]. In the current study, subjects engage in a financial 
learning task in which they can choose a gamble involving a possible 
high or low payoff or take the fixed payoff and then are shown the 
outcome of the risky option, viz. taking the gamble. Based on their 
updated belief, they can subsequently decide to adjust their strategy to 
make more adaptive choices to maximize the reward or minimize the 
loss. 

For the behavioral data, consistent with the recent literature of trial- 
and-error learning tasks under gain and loss conditions, we predict that 
subjects will differentially estimate the objective Bayes-derived proba
bility of whether the current risk option is good. Specifically, subjects 
will be more optimistic toward estimating the goodness probability of 
the risky option and therefore take more risk under gain compared to 
under loss condition. With respect to the EEG results, at the consum
matory (revealed outcome) stage, the FRN and P300 will be responsive 
to whether subjects make the correct choice or not and the incorrect 
choice will evoke a larger negative deflection of FRN and smaller P300 
compared to the correct choice [16,21]. Given the potentially increased 
belief updating, we predict that there is an increased P300 response for 
the gain rather than loss condition and the risky instead of the safe 
choice mount to a heightened deflection of the P300 [23,25]. 

2. Methods 

2.1. Subjects 

Total forty-six students (22 males, average age is 21.13 ± 2.27 SD) 
from Zhejiang University of Technology completed the whole experi
ment and were paid for their participation. All of them were right- 
handed, healthy and had no history of current or past neurological 
disorders or mental diseases. This experiment was approved by the in
ternal review board of Institute of Neuromanagement at Zhejiang Uni
versity of Technology. All subjects provided written consent forms 
ahead of the start of the experiment. Data from seven subjects were 
removed because of excessive recording artifacts. Altogether, data from 
thirty-nine subjects were entered into the final data analysis. 

2.2. Experimental design 

This study adopted a modified version of the financial decision- 
making task from the original study by Kuhnen [12]. As illustrated in  
Fig. 1, a risky option (a stock) and a safe option (a bond) were presented 
to the subjects at each trial and then they were instructed to select one 
out of them at their own pace. The task consisted of gain loss conditions 
(valence) in which the two options provided either positive or negative 
payoffs. Specifically, the payoffs of the risky stock were either + 10 
(− 10) yuan or + 2 (− 2) yuan as low variance condition and + 12 (− 12) 
yuan or 0 (0) yuan as high variance condition in gain (loss) condition. 
The payoff of the safe bond was fixed + 6 (− 6) yuan (Table 1). 

Both for gain and loss conditions, the stock paid the payoffs either 
from a good (advantageous) distribution or a bad (disadvantageous) 
distribution, which was named as a good stock or bad stock for the 
assigned block. The good stock was that where the high payoff (12 and 
10 in gain condition; 0 and − 2 in loss condition) occurred with 70% 
probability, while the low payoff (0 and 2 in gain condition; − 12 and 
− 10 in loss condition) occurred with 30% probability in each trial. In 
contrast, the bad stock exhibited the opposite pattern where the high 
payoff occurred with 30% probability, while the low payoff occurred 
with 70% probability in each trial. 

The whole task involved a total of 240 trials divided into 40 separate 
blocks. For each block, there were 6 trials and the quality of the stock 
(either good or bad stock) was unchanged across the trials, viz. the 
computer either paid the payoff from the good or bad stock distribution 
in each of these six trials. The computer randomly selected whether the 
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distribution was good or bad with half chance (50:50) probability at the 
beginning of each block and this information was announced to the 
subjects in advance. In total, all 40 blocks were split into either gain or 
loss and high or low variance conditions in a balanced manner, and the 
order of the blocks was pseudo-randomized. 

In the current task, subjects firstly made the decision whether to 
invest either in the stock or the bond and were then instructed to provide 
an estimate of the probability from 0% to 100% that the stock was from 
the good distribution after they observed the stock payoff irrespective of 
their choice. We can calculate an objective Bayesian probability that the 
stock is a good one in each trial. Specifically, based on the number t of 
high stock payoffs out of the n trials so far in the current block, the 
Bayesian probability of the good stock at the current trial is given by the 
equation 1

1+1− p
p ×( q

1− q)
n− 2t [12], where p = 50% is the prior that the stock is 

the good one before any payoffs are provided in that block and q = 70% 
is the probability that a good stock pays the high (rather than the low) 
payoff in each trial. This objective Bayesian posterior can be used to 
measure the accuracy of the subjects’ subjective probability estimates. 

The procedure of each trial is described in Fig. 1. Each block began 
with the cue “Gain” or “Loss” indicating whether the current condition 
was gain or loss for 2 s. A trial began with a fixation cross (+) for 1 s. 
Then the choice screen consisting of a stock and a bond was presented 
until the subjects made their choice by pressing either “4” or “6” on a 
numeric keyboard. Once selected, the chosen option was highlighted for 
1 s. The position of the stock and bond was fixed within each block and 
was counterbalanced across blocks. Next, the payoff of the stock option 
at the current trial was revealed by indexing the actual payoff (1 s) no 
matter whether the subjects chose the stock or bond option, which was 
then followed by a blank of 0.4 s. At the final stage, subjects were asked 
to estimate the probability, ranging from 0% to 100%, that the current 
stock was the good one at their own pace. The subjects can adjust the 
step length of either ± 1 (key: 1, 3) or ± 5 (key: 4, 6) and confirm the 
estimate value with “Enter” key. 

The subjects’ payment was based on their accumulated payoffs 

earned from both the task as well as the accuracy of the probability 
estimate in each trial. Specifically, ten tokens were added if the proba
bility estimate in each trial was within 5% of the correct answer 
(objective Bayesian probability). The tokens subjects received from the 
task were converted into real-money RMB at a ratio of 20:1, as 
compensation for participation in the experiment. 

2.3. Electroencephalogram data recording 

Electroencephalogram data was continuously recorded at the sam
pling rate of 512 Hz by the BioSemi active-two system with the 64-chan
nel cap. The two electrodes mounted to the left and right mastoid served 
as the offline reference electrodes. The vertical electrooculogram was 
recorded from the infra-orbital and supra-orbital electrodes on the right 
eye, and the horizontal electrooculogram was recorded from electrodes 
on the outer canthi of both eyes. Electrode impedance was maintained 
below 5 kΩ across the whole experiment. 

2.4. Data analyses 

The EEG data was preprocessed offline by using BrianVision Analyzer 
2.1 (Brain Products, Gilching, Germany) and EEGLAB [26]. First, the 
EEG data was re-referenced to the average of left and right mastoid 
channels, filtered with the bandpass between 0.1 and 30 Hz and the 
ocular artifacts were removed by BrainVision Analyzer [27]. Then the 
data were exported to EEGLAB for final data analysis. As this study 
mainly focused on subjects’ learning from the stock payoff across con
ditions, we extracted the EEG data for the interval 200 ms before the 
onset of stock payoffs until 800 ms after the onset, with the first 200 ms 
as the baseline. Trials containing amplifier clipping, bursts of electro
myography activity, or peak-to-peak deflection exceeding ± 80 μV were 
rejected. The mean accepted trial numbers in different conditions were 
listed in Table 2. The EEG were averaged separately for different con
ditions as described below (see also Table 2). 

We focused on the ERP deflection at the stage of outcome (revealed 
payoff) evaluation and evaluated the ERP components including FRN in 
the frontal region and the P300 in the parietal region that typically 
reflect feedback processing. Specifically, we first conducted a 2 × 2 
within-subjects repeated-measures analysis of variance (ANOVA) on the 
mean amplitude of FRN in the time windows of 250–330 ms with the 
pooled electrodes including F1, Fz, F2, FC1, FCz and FC2, taking valence 
(Gain vs. Loss) and choice accuracy (correct: choosing risky stock with 
high payoff or choosing safe bond with low payoff vs. incorrect: 
choosing risky stock with low payoff or choosing safe bond with high 

Fig. 1. Experimental procedure of an example trial in Gain block (top panel) and Loss block (bottom panel). At the beginning of each block, the cue indicated the 
condition (gain or loss, 2 s). The trial began with a fixation cross (+). Then, the choice screen appeared and the subjects made their choice between the stock and 
bond at their own pace. After the subjects made the choice, the selected option was highlighted (1 s), which was followed by a blank screen (1.5 s). Next, the stock 
payoff was revealed for the subjects (1 s) irrespective of their choice, which was then followed by a blank (0.4 s). At last stage of the trial, the subjects were asked to 
estimate the probability (ranging from 0% to 100%) that the current stock was a good one. 

Table 1 
Payoffs of Risky Stock and Safe Bond in different experiment conditions.   

Gain condition Loss condition  

Risky Stock Safe Bond Risky Stock Safe Bond 

High variance + 12 / 0 + 6 -12 / 0 -6 
Low variance + 10 / + 2 + 6 -10 / − 2 -6  

Q. Shen et al.                                                                                                                                                                                                                                    



Behavioural Brain Research 429 (2022) 113909

4

payoff) as within-subject factors. Similarly, we conducted the 2 (valence: 
gain vs. loss) × 2 (choice accuracy: correct vs. incorrect) repeated- 
measures ANOVA over the average amplitude of P300 within the time 
duration of 370–470 ms with the pooled electrodes including C1, Cz, C2, 
CP1, CPz and CP2. Second, in order to detect the possible ERP asym
metry between gain and loss conditions more accurately, we further 
examined the choice effect (risky stock choice vs. safe bond choice). A 2 
(valence: gain vs. loss) × 2 (choice accuracy: correct vs. incorrect) × 2 
(choice: risky vs. safe) repeated-measures ANOVA on the FRN in the 
same time window and electrodes as mentioned above and a 2 (valence: 
gain vs. loss) × 2 (choice accuracy: correct vs. incorrect) × 2 (choice: 
risky vs. safe) repeated-measures ANOVA on the P300 in the same time 
window and electrodes as noted above were performed. Both the 
behavioral data and EEG data were analyzed with the open-source 
software R 4.0 (https://www.r-project.org/) and package lme4 and 
lmerTest are used for the mixed-effect regression analysis. 

3. Results 

3.1. Behavioral results 

The valence effect on subjects’ beliefs regarding the likelihood that 
the stock is good can be seen in Fig. 2. The x-axis represents the values of 
the objective Bayesian probability and the y-axis represents the subjects’ 
average probability estimate. As shown in Fig. 2, in either gain or loss 

condition, subjects’ probability estimates deviate from the objective 
Bayesian probability values. Notably, these deviations are dissimilar for 
gains and losses. Specifically, subjects’ probability estimates for losses 
are lower than those for gains, indicating that subjects are more pessi
mistic regarding whether the stock is good when considering losses. 

To test the valence effect, we conducted a mixed-effect regression 
analysis as follows: 

Probability Estimateit = β0 + β1Valenceit + β2Objective Probabilityt + ε  

Where the dependent variable is the Probability Estimateit, which is 
subject i′s probability estimate of the good stock in the current trial t, 
whereas the independent variables include the Valenceit (equal to 1 if 
trial t is in a gain condition and 0 otherwise) and Objective Probabilityt 
(the correct Bayesian probability that the stock is good up to trial t in the 
current block). Standard errors were robust to heteroskedasticity and 
were clustered at the individual level to account for the serial correlation 
within each subject and the random intercepts was considered for the 
mixed model. 

As shown in Table 3, the results show that the valence indeed in
fluences the subjects’ posterior belief regarding whether the stock is 
good (β = 4.98, p < 0.001), viz. the probability estimated by the sub
jects in gain condition is higher than that in loss condition. The subjects 
have a higher frequency to choose the stock option in the gain (Riskgain 
= 56.86%, SE = 3.09%) than that in the loss condition (Riskloss =

42.61%, SE = 3.47%; p < 0.001). Considering the risk attitude, we 
define the 50% probability to choose the stock (or bond) as be risk 
neutral, the frequency to choose the risky option in the gain is higher 
than 50% (t = 2.22, p = 0.03) which indicates risk taking in the gain 
condition, whereas that in the loss is lower than 50% (t = − 2.13, 
p = 0.04) which implies risk aversion in the loss condition. 

3.2. ERP results 

3.2.1. Valence × Choice Accuracy 
In order to uncover the neural mechanism underlying how subjects 

processed the financial feedback information to form their belief about 
the stock, we mainly focused on the electrophysiological signals FRN 
(Fig. 3A) and P300 (Fig. 3B) at the stage reporting stock payoff. The 
ANOVA results of FRN shows that the main effect of Choice Accuracy is 
significant (F(1,38) = 23.04, p < 0.001, η2 = 0.38). The amplitude of FRN 
is more negative for incorrect feedback than correct feedback (Mincorrect 
= 3.35 μV, SEincorrect = 0.85 μV; Mcorrect = 4.89 μV, SEcorrect = 0.75 μV). 
However, the main effect of Valence is not significant (F(1,38) = 2.74, 
p = 0.11, η2 = 0.07). The interaction effect of Valence × Choice Accu
racy is significant (F(1,38) = 4.62, p = 0.04, η2 = 0.11). Further simple 
effect analysis indicates that the effect of Choice Accuracy is both sig
nificant in gain (p < 0.001) and loss condition (p = 0.01). To clearly 
show differences of Choice Accuracy effect between Valence (gains, 
losses), we compared the d-FRN (FRNincorrect minus FRNcorrect) and 
found that the d-FRN for gains is more negative than for losses (d- 

Table 2 
Experimental conditions for ERP analysis.  

Valence Choice Choice accuracy Accepted trial 
number 

Gain / 
Loss 

risky choice 
(stock) 

correct 
(high payoff of the 
stock) 

Gain: 35 
Loss: 23 

incorrect 
(low payoff of the 
stock) 

Gain: 28 
Loss: 24 

safe choice 
(bond) 

correct 
(low payoff of the 
stock) 

Gain: 25 
Loss: 33 

incorrect 
(high payoff of the 
stock) 

Gain: 23 
Loss: 31  

Fig. 2. Average subjective estimates for the probability that the stock is good as 
a function of the objective Bayesian probability. The subjective probability 
estimates (Y axis) given by the subjects for each level of the objective Bayesian 
probability (X axis) are presented for Gain (red line) and Loss (blue line) con
ditions. The black solid line represents the 45◦ degree line when the objective 
and subjective probability is perfectly matched. 

Table 3 
Regression analysis of Probability Estimate.  

Dependent variable Probability Estimateit 

Valenceit 4.98*** 

(1.21) 
Objective Probabilityt 0.59*** 

(0.03) 
Constant 18.34*** 

(1.24) 
AIC 68750.71 
BIC 68822.16 
Log Likelihood -34365.36 
Observations 9360 

SE are reported in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001 
and the ICC is 0.34. 
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FRNgain = − 2.07 μV, d-FRNloss = − 1.01 μV, p = 0.04). 
The ANOVA results for P300 show significant main effect of Valence 

(F(1,38) = 13.54, p = 0.001, η2 = 0.26). The amplitude of P300 is dis
cernably more positive for gain than loss (Mgain = 15.72 μV, SEgain =

1.12 μV; Mloss = 14.00 μV, SEloss = 1.07 μV). However, the main effect of 
Choice Accuracy (F(1,38) = 2.10, p = 0.16, η2 = 0.05) and the interaction 
effect of Valence × Choice Accuracy (F(1,38) = 0.47, p = 0.50, η2 = 0.01) 
are not significant. In order to further confirm the findings that we 
observed from ANOVA, we also run the mixed-effect linear regression 
model with the single trial ERP components (FRN, P300). In general, the 
results arrive at similar results as what achieved from the ANOVA, see 
Supplement for detailed methods and results. 

3.2.2. Valence × Choice Accuracy × Choice 
In order to further explore the asymmetry effect of Valence on ERP 

responses when evaluating the feedback, we next considered the Choice 
factor (risky choice vs. safe choice). The ANOVA result of FRN shows 
that the main effect of Choice (F(1,38) = 5.98, p = 0.02, η2 = 0.14), the 
interaction effects of Choice Accuracy × Choice (F(1,38) = 6.22, 
p = 0.02, η2 = 0.14) and Valence × Choice Accuracy × Choice (F(1,38) 
= 15.63, p < 0.001, η2 = 0.29) are all significant. We next examined the 
interaction effects of Choice Accuracy × Choice in gain and loss condi
tions respectively. 

3.2.2.1. FRN analysis in Gain condition. The ERP is presented in Fig. 4A. 

Results show that the interaction effect of Choice Accuracy × Choice is 
significant (F(1,38) = 22.24, p < 0.001, η2 = 0.37) for gains. Further 
simple effect analysis indicates that the effect of Choice Accuracy is only 
significant when subjects chose the risky option (p < 0.001), but not 
significant when they chose the safe option (p = 0.61). Additionally, the 
result of d-FRN analysis shows that d-FRN for the risky option is more 
negative than that for the safe option (d-FRNrisky = − 4.36 μV, d-FRNsafe 
= 0.33 μV, p < 0.001). 

3.2.2.2. FRN analysis in Loss condition. The ERP is presented in Fig. 4B. 
A marginally significant interaction effect of Choice Accuracy × Choice 
is observed (F(1,38) = 3.44, p = 0.07, η2 = 0.08) for losses. Further 
simple effect analysis indicates that the effect of Choice Accuracy is only 
significant when subjects chose the safe option (p = 0.003), but not 
significant when they chose the risky option (p = 0.87), in contrast to 
the finding for gains. The result of d-FRN analysis shows that d-FRN for 
the safe option is more negative than that for risky option (d-FRNrisky =

0.12 μV, d-FRNsafe = − 1.76 μV, p = 0.07). 
For P300, the ANOVA results also indicate a significant main effect of 

Choice (F(1,38) = 21.08, p < 0.001, η2 = 0.36), interaction effects of 
Choice Accuracy × Choice (F(1,38) = 3.95, p = 0.05, η2 = 0.09) and 
Valence × Choice Accuracy × Choice (F(1,38) = 3.98, p = 0.05, η2 

= 0.10). Similarly, we further examined the interaction effects of Choice 
Accuracy × Choice for gains and losses respectively. 

Fig. 3. The grand-average ERP waveforms at the stage of outcome evaluation for Valence (gain vs. loss) × Choice Accuracy (correct vs. incorrect) conditions. The 
ERP waveform is shown for correct (solid line) and incorrect feedback (dot-solid) in the gain condition with red color, and for correct (solid line) as well as incorrect 
feedback (dot-solid) in the loss condition with blue color. (A) Frontal FRN during 250–330 ms is represented by the shaded portion and d-FRN (incorrect minus 
correct) is shown for the gain condition (solid line) and loss (dot-solid line) condition in black at the two representative electrodes Fz and FCz. (B) Parietal P300 
during 370–470 ms is represented by the blue shaded portion at the two representative electrodes Cz and CPz. 
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3.2.2.3. P300 analysis in Gain condition. The ERP is presented in  
Fig. 5A. Results show that interaction effect of Choice Accuracy 
× Choice is significant (F(1,38) = 10.84, p = 0.002, η2 = 0.22) for gains. 
Further simple effect analysis indicates that the effect of Choice Accu
racy is both significant when subjects chose the risky option (p = 0.009) 
as well as the safe option (p = 0.03). However, the P300 is more positive 
for correct feedback when choosing the risky option whereas the P300 is 
more positive for incorrect feedback when choosing safe option. 

3.2.2.4. P300 analysis in Loss condition. The ERP is presented in Fig. 5B. 
We do not observe a significant interaction effect of Choice Accuracy 
× Choice (F(1,38) = 0.40, p = 0.53, η2 = 0.01) in loss condition. There is 
no difference of P300 between correct and incorrect feedbacks no matter 
whether subjects chose risky or safe option (both p > 0.3). 

3.2.3. Link between ERP amplitude and Subjective probability estimate 
To test the potential link between the deflection of ERP and the 

probability estimate, we conducted a mixed-effect regression analysis as 
follows: 

Probability Estimateit = β0 + β1ERP componentit + β2Valenceit

+ β3Choice Accuracyit + β3ERP componentit

× Valenceit + ε 

When considering the FRN, the independent variable ERP compo
nentit represents the average FRN amplitude from six prefrontal elec
trodes (F1, Fz, F2, FC1, FCz and FC2) within the time window from 
250 ms to 330 ms for subject i at trial t, whereas considering the P300, 
the ERP componentit represents the average P300 amplitude of the six 
centroparietal electrodes (C1, Cz, C2, CP1, CPz and CP2) within the time 
window from 370 ms to 470 ms for subject i′s in the trial t. The other 

independent variables include Valenceit (equal to 1 for gain condition 
and 0 otherwise); the Choice Accuracyit (equals to 1 for correct condition: 
choosing risky stock with high payoff or choosing safe bond with low 
payoff; equals to 0 for incorrect condition: choosing risky stock with low 
payoff or choosing safe bond with high payoff), and the interaction 
between ERP componentit and Valenceit. 

As shown in Table 4, for the link between FRN and probability es
timate, we first observe that there is a main effect for FRN (β = 0.07, 
p < 0.001) and it is also significant for the interaction between Valence 
and FRN (β = 0.15, p < 0.001). Collapsed by the Valence (gain and loss), 
we find a prominently significant effect of FRN in the gain condition 
(β = 0.13, p < 0.001), indicating the lower the magnitude (positive 
coefficient for a negative ERP component), the higher the probability 
estimate value for the subjects. Nevertheless, the FRN effect is absent for 
the loss condition (β = − 0.005, p = 0.87). With respect to the subse
quent P300 component, we also observe a main effect (β = 0.10, 
p < 0.001), and there is an interaction between Valence and P300 
(β = 0.09, p = 0.005). Collapsed by the Valence (gain and loss), we find 
a prominently significant effect of P300 both in the gain (β = 0.14, 
p < 0.001) and loss condition (β = 0.06, p = 0.04). Namely, the higher 
the deflection of P300, the larger the probability estimate for both 
conditions. 

4. Discussion 

The quality of financial decisions that people make is crucial to 
ensure their security, well-being, self-sufficiency and long-term happi
ness. The market is volatile and at its most extreme “boom or bust”, 
similar in many ways to how an individual experiences both financial 
and non-financial ones encountered across a life-span. Faced with 

Fig. 4. The grand-average ERP waveforms at the stage of outcome evaluation for Valence (gain vs. loss) × Choice Accuracy (correct vs. incorrect) × Choice (risky vs. 
safe) conditions at two representative electrodes Fz and FCz. The ERP waveform is shown for correct (solid line) and incorrect (dot-solid) feedback with red color in 
risky choice condition, and for correct (solid line) and incorrect (dot-solid line) with blue color in the safe choice condition. The d-FRN (incorrect minus correct) is 
shown with the black solid line for the risky choice condition and black dot-solid line for the safe choice condition. Frontal FRN during 250–330 ms is represented by 
the shaded portion and the average FRN amplitude from six prefrontal electrodes (F1, Fz, F2, FC1, FCz and FC2) in different conditions is shown in the bar chart for 
gain condition (panel A) and loss condition (panel B). 
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prospective events, how does an economic agent understand and eval
uate market feedback on their investments, interpret such information 
and update their belief? Importantly, whether they treat positive and 
negative outcomes differently? These considerations prompted us to 
carry out a financial learning task coupled with simultaneous electro
physiological recordings from subjects, enabling us to track both 
behavior and neural signals and hence providing insights into how in
dividuals learn and shape their beliefs in a paradigm where they receive 
feedback regarding the outcome of their investment choice. 

The behavioral data shows that individuals can learn the quality of 

risky options at the current stage in an efficacious manner and update 
their belief system through feedback accordingly (Fig. 2). Critically, 
consistent with our prediction, subjects reported a higher probability 
estimation of the stock for gains compared to losses. In addition to that, 
defining the even chance to choose the stock or bond option as risk 
neutrality, we also observed that the subjects are likely to be risk seeking 
in the gain condition while become risk averse in the loss condition. 
Therefore, at odds with the descriptive context where loss looms larger 
than gain, in an experiential task with instant feedback, the subjects tend 
to be optimistic toward the gain rather than loss, in accordance with 

Fig. 5. The grand-average ERP waveforms at the stage of outcome evaluation over Valence (gain vs. loss) × Choice Accuracy (correct vs. incorrect) × Choice (risky 
vs. safe) conditions at the two representative electrodes Cz and CPz. The ERP waveform is shown for correct (solid line) and incorrect feedback (dot-solid line) in red 
for risky choice, and correct (solid line) and incorrect (dot-solid line) in blue for the safe choice. Parietal P300 during 370–470 ms is represented by the shaded 
portion and the average P300 amplitude from six centroparietal electrodes (C1, Cz, C2, CP1, CPz and CP2) in different conditions is shown in the bar chart for gain 
(panel A) and loss condition (panel B). 

Table 4 
Probability estimate prediction with ERP amplitude.  

Dependent variable Probability Estimateit 

FRN P300 

All trials All trials Gain trials Loss trials All trials All trials Gain trials Loss trials 

ERP componentit 0.07*** 

(0.02) 
-0.004 
(0.03) 

0.13*** 

(0.03) 
-0.005 
(0.03) 

0.10*** 

(0.02) 
0.05* 
(0.02) 

0.14*** 

(0.03) 
0.06* 
(0.03) 

Valenceit 8.35*** 

(1.39) 
7.71*** 

(1.40)   
8.23*** 

(1.40) 
6.95*** 

(1.49)   
Choice Accuracyit 2.55 

(1.34) 
2.51 
(1.35) 

5.50*** 

(1.53) 
-0.47 
(1.43) 

2.61 
(1.34) 

2.60* 
(1.32) 

5.61*** 

(1.49) 
-0.45 
(1.42) 

ERP componentit×Valenceit  0.15*** 

(0.03)    
0.09** 

(0.03)   
Constant 42.38*** 

(1.11) 
42.69*** 

(1.13) 
48.69*** 

(0.95) 
44.18*** 

(1.17) 
41.18*** 

(1.10) 
41.78*** 

(1.12) 
46.98*** 

(0.99) 
43.26*** 

(1.31) 
AIC 76115.57 76103.59 38136.56 37932.70 76074.76 76073.92 38116.47 37907.47 
BIC 76221.49 76216.58 38200.22 37996.41 76180.69 76186.90 38180.13 37971.18 
Log Likelihood -38042.79 -38035.80 -19058.28 -18956.35 -38022.38 -38020.96 -19048.23 -18943.73 
Observations 8618 8618 4297 4321 8618 8618 4297 4321 

SE are reported in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001, The ICCs for the regression models of FRN are 0.09, 0.09, 0.09 and 0.09. The ICCs for the models 
of P300 are 0.09, 0.09, 0.09 and 0.11. 
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recent findings [10,12,28]. 
With respect to the electrophysiological results, at the consumma

tory stage when the outcome of risky option is revealed, it shows a 
prominent effect of outcome and the incorrect outcome elicits a larger 
deflection of FRN than the correct outcome for both gain and loss con
ditions, consistent with the general findings that the FRN is sensitive to 
the reward (Fig. 3A, [15,16,29]). Interestingly, in accordance with and 
reflecting the behavioral finding, both the d-FRN and P300, show a 
prominent effect of valence. On the one hand, the FRN difference 
(incorrect vs. correct) of outcome for gains is larger than that for losses 
(Fig. 3A). In parallel, the gains rather than losses evoke a larger 
deflection of the P300 irrespective of the correctness of the choice 
(Fig. 3B). Although FRN is often considered to reflect the correctness of 
the choice, recent studies also suggest a potential role of the FRN that 
reflects the salience of the outcome. For example, Bellebaum et al. [18] 
carefully manipulated the magnitude of the potential reward (5, 20, 50) 
and found that the FRN is not only responsive toward the non-reward vs. 
reward difference, it also responds to magnitude. The larger the 
magnitude of the outcome, the larger the FRN difference between 
reward and non-reward outcomes. Similarly, applying a simple rein
forcement task for gains and losses, KreuSSel et al. [24] also found that 
the feedback for gains induces a larger FRN difference compared to the 
losses. Altogether, the d-FRN difference between gains and losses vali
dates differential processing of the outcome across gain and loss 
conditions. 

To account for the pessimistic belief formation for losses compared 
with gains, Kuhnen [12] argues that the oversensitivity over the low 
outcome for losses could be a likely explanation. However, the elec
trophysiological findings here suggest an alternative explanation, viz. 
there is a general reduced processing for the outcome for losses and not 
due to an increased processing. For instance, if we closely examine the 
raw FRN deflection, the d-FRN difference between gain loss conditions is 
mainly driven by the reduced deflection of the high outcome in the gain 
condition and the negative deflection toward the low outcome fails to 
exhibit such a difference over gains and losses (Fig. 3 A). To further 
confirm that, as illustrated in Table 4, after controlling for the apparent 
effect of valence and accuracy, it still evidently exhibits that reduced 
deflection of FRN and increased P300 could link with the optimistic 
estimation of the probability in the gain condition; whereas only the 
greater deflection of the P300 could link with increased probability 
estimation in the loss condition. Given the notion that feedback outcome 
is ahead of belief estimate within each trial, these ERP deflections could 
be predictive for the subsequent belief updating in a trial-wise manner. 
It also indicates an asymmetric representation which is indexed by FRN 
amplitude at the stage of outcome evaluation. 

Finally, as the subjects choose the risky or safe option, the outcome of 
the risky option could be either factual or counterfactual to the subjects. 
Therefore, we further stratify the outcomes with the trial-wise option 
selection (risky vs. safe). As over the P300, consistent with our predic
tion, the risky-choice contingent outcome elicits a larger deflection of 
the P300 compared to the safe option, notwithstanding for either gains 
or losses. Intuitively, we expect that self-contingent financial interest 
links with the salience of the stimuli [19,20]. Although at the aggregate 
level for the FRN, we observe a divergence between correct and incor
rect outcome, the drive of such a pattern might differentiate over gain 
loss condition. Specifically, under gains, the incorrect outcome of risky 
choice (low payoff) elicits a larger deflection of the FRN compared to the 
correct outcome (high payoff) whereas this discrepancy is not observed 
for the safe choice selection (Fig. 4A). However, for losses, the correct
ness representation of the FRN is solely prominent for the safe choice 
(Fig. 4B), viz. the incorrect choice (high payoff) elicits a larger deflection 
of the FRN compared to the correct choice (low payoff). Altogether, the 
current findings demonstrate that although the factual outcome drives 
the high low payoff discrepancy for gains, it might be considered that 
the counterfactual outcome contributes to such a difference in the loss 
condition albeit at a reduced intensity. Recent studies have started to 

investigate the extent to which both the factual and counterfactual 
outcomes contribute toward learning behavior [25,30,31]. However, 
few studies have reported the extent of the interaction between valence 
(gain and loss) and counterfactual thinking and especially how the brain 
represents the chosen and unchosen outcome under gain and loss con
ditions. The current electrophysiological findings offer a clue to the 
dissociated representation of the reward or not, under gain and loss 
conditions. To our knowledge, the current study is one of the first which 
finds such a pattern and subsequent studies could fruitfully apply a 
combined behavioral, neural imaging and eye tracking strategy to 
further validate the current findings as well as further explore the un
derlying mechanism for the asymmetry between gains and losses. 

Altogether, both the behavioral and electrophysiological findings 
evidently suggest a gain loss divergence in an instrumental learning task 
with experiential characteristics. Critically, such an asymmetry sys
tematically deviates from those observed in a description context where 
individuals assign higher weight toward losses rather than gain [6,32], 
which is well resonant with the recent advances about the description 
vs. experience gap [8]. Specifically, the disproportionate reward pro
cessing for the outcome over gain and loss conditions represented by 
d-FRN and P300, is in parallel with the behavioral findings of belief 
updating in the current study. Moreover, the deflection of the ERP 
amplitude at the experience stage could be predictive for the subsequent 
belief updating especially the FRN, which is solely responsive in the gain 
rather than loss condition. Therefore, in the experiential context, the 
brain tends to respond in an unbalanced manner for the mirrored 
monetary outcome in gain and loss condition. This is represented both at 
the behavioral and neural level, enriching our understanding of the 
asymmetric processing of the reward in the gain and loss condition [9, 
12,33]. 

5. Conclusion 

The current study applies a financial learning task together with EEG 
recording to investigate the extent to which valence (gain vs. loss) 
modulates belief updating and reveals its underlying neurophysiological 
mechanism and how the risky choice modulates such a process. The 
present findings suggest that the reduced (represented by d-FRN and 
P300) rather than the increased neural response coincidentally corre
sponds to the pessimistic belief formation under losses compared to the 
gains. The present study also suggests that, under gain and loss condi
tions, the FRN not only represents a differential processing of factual and 
counterfactual outcome, but also plays a dissociated role for the pre
diction of the subsequent belief updating. In summary, the current 
findings both from the behavioral and electrophysiological results 
deepen our understanding of decision over risk under gain and loss 
conditions. 
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[4] A.N. Häusler, C.M. Kuhnen, S. Rudorf, B. Weber, Preferences and beliefs about 
financial risk taking mediate the association between anterior insula activation and 
self-reported real-life stock trading, Sci. Rep. 8 (2018) 1–13, https://doi.org/ 
10.1038/s41598-018-29670-6. 

[5] A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation 
of uncertainty, J. Risk Uncertain. 5 (1992) 297–323, https://doi.org/10.1017/ 
CBO9780511803475.004. 

[6] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, 
Econometrica 47 (1979) 263–292, https://doi.org/10.2307/1914185. 

[7] R. Hertwig, I. Erev, The description–experience gap in risky choice, Trends Cogn. 
Sci. 13 (2009) 517–523, https://doi.org/10.1016/j.tics.2009.09.004. 

[8] B. Garcia, F. Cerrotti, S. Palminteri, The description–experience gap: a challenge 
for the neuroeconomics of decision-making under uncertainty, Philos. Trans. R. 
Soc. B Biol. Sci. 376 (2021), 20190665, https://doi.org/10.1098/rstb.2019.0665. 

[9] D. Eil, J.M. Rao, The good news-bad news effect: asymmetric processing of 
objective information about yourself, Am. Econ. J. Microecon. 3 (2011) 114–138, 
https://doi.org/10.1257/mic.3.2.114. 

[10] M. Lebreton, K. Bacily, S. Palminteri, J.B. Engelmann, Contextual influence on 
confidence judgments in human reinforcement learning, PLOS Comput. Biol. 15 
(2019) e1006973, https://doi.org/10.1371/journal.pcbi.1006973. 

[11] C.-C Ting, S. Palminteri, J.B. Engelmann, M . Lebreton, Robust valence-induced 
biases on motor response and confidence in human reinforcement learning, Cogn. 
Affect. Behav. Neurosci. 20 (2020) 1184–1199, https://doi.org/10.3758/s13415- 
020-00826-0. 

[12] C.M. Kuhnen, Asymmetric learning from financial information, J. Financ. 70 
(2015) 2029–2062, https://doi.org/10.1111/jofi.12223. 

[13] O. Bartra, J.T. McGuire, J.W. Kable, The valuation system: a coordinate-based 
meta-analysis of BOLD fMRI experiments examining neural correlates of subjective 
value, Neuroimage 76 (2013) 412–427, https://doi.org/10.1016/j. 
neuroimage.2013.02.063. 

[14] J.A. Clithero, A. Rangel, Informatic parcellation of the network involved in the 
computation of subjective value, Soc. Cogn. Affect. Neurosci. 9 (2014) 1289–1302, 
https://doi.org/10.1093/scan/nst106. 

[15] W.J. Gehring, A.R. Willoughby, The medial frontal cortex and the rapid processing 
of monetary gains and losses, Science 295 (2002) 2279–2282, https://doi.org/ 
10.1126/science.1066893. 

[16] G. Hajcak, J.S. Moser, C.B. Holroyd, R.F. Simons, The feedback-related negativity 
reflects the binary evaluation of good versus bad outcomes, Biol. Psychol. 71 
(2006) 148–154, https://doi.org/10.1016/j.biopsycho.2005.04.001. 

[17] N. Yeung, A.G. Sanfey, Independent coding of reward magnitude and valence in 
the human brain, J. Neurosci. 24 (2004) 6258–6264, https://doi.org/10.1523/ 
JNEUROSCI.4537-03.2004. 

[18] C. Bellebaum, D. Polezzi, I. Daum, It is less than you expected: the feedback-related 
negativity reflects violations of reward magnitude expectations, Neuropsychologia 
48 (2010) 3343–3350, https://doi.org/10.1016/j.neuropsychologia.2010.07.023. 

[19] J. Polich, Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol. 
118 (2007) 2128–2148, https://doi.org/10.1016/j.clinph.2007.04.019. 

[20] J.K. Olofsson, S. Nordin, H. Sequeira, J. Polich, Affective picture processing: an 
integrative review of ERP findings, Biol. Psychol. 77 (2008) 247–265, https://doi. 
org/10.1016/j.biopsycho.2007.11.006. 

[21] Y. Wu, X. Zhou, The P300 and reward valence, magnitude, and expectancy in 
outcome evaluation, Brain Res. 1286 (2009) 114–122, https://doi.org/10.1016/j. 
brainres.2009.06.032. 

[22] Y. Zheng, Q. Li, Y. Zhang, Q. Li, H. Shen, Q. Gao, S. Zhou, Reward processing in 
gain versus loss context: an ERP study, Psychophysiology 54 (2017) 1040–1053, 
https://doi.org/10.1111/psyp.12855. 

[23] W. Yi, S. Mei, Q. Li, X. Liu, Y. Zheng, How choice influences risk processing: an ERP 
study, Biol. Psychol. 138 (2018) 223–230, https://doi.org/10.1016/j. 
biopsycho.2018.08.011. 

[24] L. KreuSSel, J. Hewig, N. Kretschmer, H. Hecht, M.G.H. Coles, W.H.R. Miltner, The 
influence of the magnitude, probability, and valence of potential wins and losses on 
the amplitude of the feedback negativity, Psychophysiology 49 (2012) 207–219, 
https://doi.org/10.1111/j.1469-8986.2011.01291.x. 

[25] R. Osinsky, H. Walter, J. Hewig, What is and what could have been: An ERP study 
on counterfactual comparisons, Psychophysiology 51 (2014) 773–781, https://doi. 
org/10.1111/psyp.12221. 

[26] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial 
EEG dynamics including independent component analysis, J. Neurosci. Methods 
134 (2004) 9–21, https://doi.org/10.1016/0022-2852(61)90347-2. 

[27] G. Gratton, M.G. Coles, E. Donchin, A new method for off-line removal of ocular 
artifact, Electroencephalogr. Clin. Neurophysiol. 55 (1983) 468–484, https://doi. 
org/10.1016/0013-4694(83)90135-9. 

[28] G. Lefebvre, M. Lebreton, F. Meyniel, S. Bourgeois-Gironde, S. Palminteri, 
Behavioural and neural characterization of optimistic reinforcement learning, Nat. 
Hum. Behav. 1 (2017) 1–9, https://doi.org/10.1038/s41562-017-0067. 

[29] Q. Ma, Q. Shen, Q. Xu, D. Li, L. Shu, B. Weber, Empathic responses to others’ gains 
and losses: an electrophysiological investigation, Neuroimage 54 (2011) 
2472–2480, https://doi.org/10.1016/j.neuroimage.2010.10.045. 

[30] D. Pischedda, S. Palminteri, G. Coricelli, The effect of counterfactual information 
on outcome value coding in medial prefrontal and cingulate cortex: from an 
absolute to a relative neural code, J. Neurosci. 40 (2020) 3268–3277, https://doi. 
org/10.1523/JNEUROSCI.1712-19.2020. 

[31] S. Palminteri, G. Lefebvre, E.J. Kilford, S.J. Blakemore, Confirmation bias in human 
reinforcement learning: evidence from counterfactual feedback processing, PLoS 
Comput. Biol. 13 (2017), e1005684, https://doi.org/10.1371/journal. 
pcbi.1005684. 

[32] D. Ariely, J. Huber, K. Wertenbroch, When do losses loom larger than gains? 
J. Mark. Res. 42 (2005) 134–138, https://doi.org/10.1509/jmkr.42.2.134.62283. 

[33] N. Salem-Garcia, S. Palminteri, M. Lebreton, The computational origins of 
confidence biases in reinforcement learning, Under Review (2021). 

Q. Shen et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.bbr.2022.113909
https://doi.org/10.1080/13669877.2020.1758193
https://doi.org/10.1080/13669877.2020.1758193
https://doi.org/10.2189/asqu.53.3.422
https://doi.org/10.1111/j.1467-9280.2008.02087.x
https://doi.org/10.1111/j.1467-9280.2008.02087.x
https://doi.org/10.1038/s41598-018-29670-6
https://doi.org/10.1038/s41598-018-29670-6
https://doi.org/10.1017/CBO9780511803475.004
https://doi.org/10.1017/CBO9780511803475.004
https://doi.org/10.2307/1914185
https://doi.org/10.1016/j.tics.2009.09.004
https://doi.org/10.1098/rstb.2019.0665
https://doi.org/10.1257/mic.3.2.114
https://doi.org/10.1371/journal.pcbi.1006973
https://doi.org/10.3758/s13415-020-00826-0
https://doi.org/10.3758/s13415-020-00826-0
https://doi.org/10.1111/jofi.12223
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1093/scan/nst106
https://doi.org/10.1126/science.1066893
https://doi.org/10.1126/science.1066893
https://doi.org/10.1016/j.biopsycho.2005.04.001
https://doi.org/10.1523/JNEUROSCI.4537-03.2004
https://doi.org/10.1523/JNEUROSCI.4537-03.2004
https://doi.org/10.1016/j.neuropsychologia.2010.07.023
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1016/j.biopsycho.2007.11.006
https://doi.org/10.1016/j.biopsycho.2007.11.006
https://doi.org/10.1016/j.brainres.2009.06.032
https://doi.org/10.1016/j.brainres.2009.06.032
https://doi.org/10.1111/psyp.12855
https://doi.org/10.1016/j.biopsycho.2018.08.011
https://doi.org/10.1016/j.biopsycho.2018.08.011
https://doi.org/10.1111/j.1469-8986.2011.01291.x
https://doi.org/10.1111/psyp.12221
https://doi.org/10.1111/psyp.12221
https://doi.org/10.1016/0022-2852(61)90347-2
https://doi.org/10.1016/0013-4694(83)90135-9
https://doi.org/10.1016/0013-4694(83)90135-9
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1016/j.neuroimage.2010.10.045
https://doi.org/10.1523/JNEUROSCI.1712-19.2020
https://doi.org/10.1523/JNEUROSCI.1712-19.2020
https://doi.org/10.1371/journal.pcbi.1005684
https://doi.org/10.1371/journal.pcbi.1005684
https://doi.org/10.1509/jmkr.42.2.134.62283
http://refhub.elsevier.com/S0166-4328(22)00177-2/sbref33
http://refhub.elsevier.com/S0166-4328(22)00177-2/sbref33

	Asymmetric valuation and belief updating over gain and loss in risky decision making: A behavioral and electrophysiological ...
	1 Introduction
	2 Methods
	2.1 Subjects
	2.2 Experimental design
	2.3 Electroencephalogram data recording
	2.4 Data analyses

	3 Results
	3.1 Behavioral results
	3.2 ERP results
	3.2.1 Valence × Choice Accuracy
	3.2.2 Valence × Choice Accuracy × Choice
	3.2.2.1 FRN analysis in Gain condition
	3.2.2.2 FRN analysis in Loss condition
	3.2.2.3 P300 analysis in Gain condition
	3.2.2.4 P300 analysis in Loss condition

	3.2.3 Link between ERP amplitude and Subjective probability estimate


	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References


